Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(5): 2734-2744, 2024 May.
Article in English | MEDLINE | ID: mdl-38437117

ABSTRACT

360° images, with a field-of-view (FoV) of $180^{\circ}\times 360^{\circ}$, provide immersive and realistic environments for emerging virtual reality (VR) applications, such as virtual tourism, where users desire to create diverse panoramic scenes from a narrow FoV photo they take from a viewpoint via portable devices. It thus brings us to a technical challenge: 'How to allow the users to freely create diverse and immersive virtual scenes from a narrow FoV image with a specified viewport?' To this end, we propose a transformer-based 360° image outpainting framework called Dream360, which can generate diverse, high-fidelity, and high-resolution panoramas from user-selected viewports, considering the spherical properties of 360° images. Compared with existing methods, e.g., [3], which primarily focus on inputs with rectangular masks and central locations while overlooking the spherical property of 360° images, our Dream360 offers higher outpainting flexibility and fidelity based on the spherical representation. Dream360 comprises two key learning stages: (I) codebook-based panorama outpainting via Spherical-VQGAN (S-VQGAN), and (II) frequency-aware refinement with a novel frequency-aware consistency loss. Specifically, S-VQGAN learns a sphere-specific codebook from spherical harmonic (SH) values, providing a better representation of spherical data distribution for scene modeling. The frequency-aware refinement matches the resolution and further improves the semantic consistency and visual fidelity of the generated results. Our Dream360 achieves significantly lower Frechet Inception Distance (FID) scores and better visual fidelity than existing methods. We also conducted a user study involving 15 participants to interactively evaluate the quality of the generated results in VR, demonstrating the flexibility and superiority of our Dream360 framework.

2.
Food Chem Toxicol ; 182: 114199, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000460

ABSTRACT

Benzo(a)Pyrene (BaP) is a well-known environmental carcinogen that poses a significant risk to human health. The pivotal genes and toxicity pathways have been identified as key events to construct the mode of action (MOA) of BaP. In this study, we focused on evaluating the association between genetic variants in BaP-disturbed toxicity pathways and the susceptibility of laryngeal squamous cell carcinoma (LSCC), based on the data of our previous genome-wide association analysis (GWAS). In addition, we investigated the biological roles of these significant polymorphisms by integrating bioinformatic annotation and experimental validation. Our findings revealed that 15 functional polymorphisms in AHR signaling, p53 signaling, NRF2 signaling, TGF-ß signaling, STAT3 signaling, and IL-8 signaling pathways were significantly associated with susceptibility to LSCC. Our study provides a novel approach for identifying novel risk genetic loci utilizing GWAS data, and suggests potential targets for early detection of LSCC in the future.


Subject(s)
Benzo(a)pyrene , Head and Neck Neoplasms , Humans , Benzo(a)pyrene/metabolism , Squamous Cell Carcinoma of Head and Neck , Genome-Wide Association Study , Polymorphism, Genetic
3.
Dalton Trans ; 48(38): 14299-14305, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31453996

ABSTRACT

A thorough structural exploration was performed for MgB6 combining the global structure searching method with first-principles calculations. Besides the known Cmcm phase, new phases, i.e. I4/mmm, C2/m-I, C2/m-II and P21/m, were predicted to be stable in the pressure range of 18-100 GPa. Unexpectedly, Cmcm-MgB6 was found to be a semiconductor with an indirect band gap of 0.38 eV with the HSE06 functional, in good agreement with the experimental finding. I4/mmm-MgB6 stabilized above 18 GPa exhibits semimetallic behaviour with a topological node-line near the Fermi level. Consequently, C2/m-I MgB6 with a sandwich structure similar to MgB2 is predicted to be a superconductor with a critical temperature (Tc) of 9.5 K. By analysing the electronic structure, the intriguing semiconductor-semimetal-superconductor transition may be ascribed to the delocalization of more B-p electrons in the boron sublattice. The novel functions uncovered for MgB6 may inspire more efforts to discover materials with intriguing properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...